

香港中文大學

The Chinese University of Hong Kong

CSCI2510 Computer Organization Lecture 02: Number and Character Representation

Ming-Chang YANG mcyang@cse.cuhk.edu.hk

COMPUTER ORGANIZATION AND EMBEDDED SYSTEMS

Reading: Chap. 1.4~1.5, 9.7~9.8

Recall: How to talk to the computer?

CSCI2510 Lec01: Basic Structure of Computers

Outline

- Number Representation
 - Number Systems
 - Integers
 - Unsigned and Signed Integer
 - Arithmetic Operations
 - Floating-Point Numbers
 - Unsigned Binary Fraction
 - Floating-Point Number Representation
 - Arithmetic Operations
- Character Representation
 - ASCII

Number Systems

- Common number systems:
 - The *radix* or *base* of the number system denotes the number of digits used in the system.

Binary (base 2)	0	1														
Octal (base 8)	0	1	2	3	4	5	6	7								
Decimal (<i>base</i> 10)	0	1	2	3	4	5	6	7	8	9						
Hexadecimal (base 16)	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Ε	F

- The most natural way in a computer system is by binary numbers (0, 1).
 Image: Binary Signal (Binary Signal)
 - (0, 1) can be represented as
 (off, on) electrical signals.

https://social.technet.microsoft.com/wiki/contents/articles/22118.declaring-numeric-data-types.aspx

Conversion of Number Systems

Decimal	Binary	Octal	Hexadecimal
0 0	0000	0 0	0
01	0001	01	1
0 2	0010	0 2	2
03	0011	03	3
04	0100	04	4
0 5	0101	0 5	5
0 6	0110	0 6	6
07	0111	07	7
0 8	1000	10	8
09	1001	11	9
10	1010	12	А
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F
16???	10000	2 0	10

Outline

- Number Representation
 - Number Systems
 - Integers
 - Unsigned and Signed Integer
 - Arithmetic Operations
 - Floating-Point Numbers
 - Unsigned Binary Fraction
 - Floating-Point Number Representation
 - Arithmetic Operations
- Character Representation
 - ASCII

Unsigned Integer Representation

• Consider an *n*-bit vector

$$B = b_{n-1} \dots b_1 b_0,$$

where $b_i = 0 \text{ or } 1$ (binary number) for $0 \le i \le n-1$

- Most Significant Bit (MSB): b_{n-1} (i.e., the leftmost bit)
- Least Significant Bit (LSB): b_0 (i.e., the rightmost bit)
- This vector can represent the value for an <u>unsigned</u> <u>integer</u> V(B) in the range 0 to $2^n - 1$, where V(B) = $b_{n-1} \times 2^{n-1} + \dots + b_1 \times 2^1 + b_0 \times 2^0$
- For example, if B = 1001 (n=4) V(B) = $1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 9$

Signed Integer Representation (1/3)

- To represent both positive and negative numbers, we need different systems to representing signed integer.
- In <u>written</u> decimal system, a signed integer is usually represented by a "+" or "-" <u>sign</u> and followed by the <u>magnitude</u>.
 - E.g. -73, -215, +349
- In binary system, we have three common choices:
 - Sign-and-magnitude
 - 1's-complement
 - 2's-complement

Signed Integer Representation (2/3)

- Positive values: MSB decides the sign (0: "+", 1: "-"), and the remaining bits represent an unsigned integer.
 Positive values have identical representations in all systems.
- Negative values have different representations:
 - Sign-and-magnitude (MSB: sign, other bits: magnitude)
 - Negative values: changing the MSB from 0 to 1.
 - E.g. -3 is represented by 1011. ex: 0011
 - 1's-complement
 - Negative values: inverting each bit of the positive number.
 - E.g. -3 is obtained by flipping each bit in 0011 to yield 1100. ex: 0011

1011

- 2's-complement
 - Negative values: subtracting the positive number from 2^n or adding 1 to 1's-complement of that negative number. ex: ex:10000 1100
 - E.g. -3 is obtained by adding 1 to 1100 to yield 1101. -> 0011 +> 0001

1100

Signed Integer Representation (3/3)

В	Values Represented									
b ₃ b ₂ b ₁ b ₀	Sign-and-magnitude	1's-complement	2's-complement							
0111	+ 7	+ 7	+ 7							
0110	+ 6	+ 6	+ 6							
0101	+ 5	+ 5	+ 5							
0100	+ 4	+ 4	+ 4							
0011	+ 3	+ 3	+ 3							
0010	+ 2	+ 2	+ 2							
0001	+ 1	+ 1	+ 1							
0000	+ 0	+ 0	+ 0							
1000	- 0	- 7	- 8							
1001	- 1	- 6	- 7							
1010	- 2	- 5	- 6							
1011	- 3	- 4	- 5							
1100	- 4	- 3	- 4							
1101	- 5	- 2	- 3							
1110	- 6	- 1	- 2							
1111	- 7	- 0	- 1							

Class Exercise 2.1

Student	ID:
Name:	

Date:

- Question: Which representation system(s) uses distinct representations for +0 and -0?
- Answer: _____
- Question: Which representation system(s) has only one representation for 0?
- Answer: _____
- Question: Which representation system(s) is able to represent – 8 for 4-bit numbers?
- Answer: _____

Class Exercise 2.2

- Question: Consider the decimal number 56. Please use 8 bits to represent it in:
 - Sign-and-magnitude: _____
 - 1's-complement:
 - 2's-complement:
- Question: Consider the 8-bit string 10110101, what is its decimal value when interpreted as:
 - Sign-and-magnitude: _____
 - 1's-complement:
 - 2's-complement:
- Question: Given n bits, what is the range of integers can be represented by the three representations?
- Answer:

Addition of Unsigned Integers

• Addition of 1-bit unsigned numbers:

- To add multiple-bit numbers:
 - We add bit pairs starting from the low-order (right) end, propagating carries toward the high-order (left) end.

+

- The carry-out from a bit pair becomes the carry-in to the next bit pair.
- The carry-in must be added to a bit pair in generating the sum and carry-out at that position. $$^{\rm carry-in}\,1$$
- For example,

r or example,

00000001

Arithmetic of Signed Integers

- The three signed integer representation systems differ only in the way of representing negative values.
- Their relative merits on performing arithmetic operations can be summarized as follows:
 - Sign-and-magnitude: the simplest representation, but it is also the most awkward for addition/subtraction operations.
 - 1's-complement: somewhat better than the sign-andmagnitude system.
 - 2's-complement: the most efficient method for performing addition and subtraction operations.
 - This is also why the 2's-complement system is the one most often used in modern computers.

Why 2's-complement Arithmetic?

- First consider adding +7 to -3:
 - What if we perform this addition by adding bit pairs from right to left (as what we did for n-bit unsigned numbers)?

- If the leftmost carry-out bit is ignored, we get $(+4)_{10}$.
- Rules for *n*-bit signed number addition/subtraction:

-X+Y

- Add their n-bit 2's-complement representations from right to left
- Ignore the carry-out bit at the MSB position
- -X-Y
 - Interpret as, and perform X + (-Y)
- Note: The sum should be in the range of $-2^{n-1} \sim (2^{n-1}-1)$

Class Exercise 2.3

• Using 4-bit 2's-complement number to calculate:

•
$$2-4$$
 • $(-7)-1$ • $(-7)-(-5)$

Sign Extension for 2's-complement

- We often need to represent a value given in a certain number of bits by using a larger number of bits.
- How to represent a signed number in 2's-complement form using a larger number of bits?
- Sign Extension: Repeat the sign bit as many times as needed to the left.
 - Positive Number: Add 0's to the left-hand-side
 - E.g. 0111 → 0000 0111
 - Negative Number: Add 1's to the left-hand-side
 - E.g. 1010 → **1111** 1010

For example: Representing $-2 \sim +1$ using 4 bits

B =	b ₃ b ₂ b ₁ b ₀	2's-complement
0	001	+ 1
0	000	+ 0
1	110	- 2
1	111	- 1

Overflow in Integer Arithmetic

- In **Unsigned** Number Arithmetic:
 - A carry-out of 1 at MSB always indicates an overflow.
 - E.g. 1111 + 0001 = **1**0000
- In 2's-complement Signed Number Arithmetic:
 - The value of the carry-out bit from the sign-bit position is NOT an indicator of overflow.
 - E.g. $(+7)_{10} + (+4)_{10} = (0111)_2 + (0100)_2 = (1011)_2 = (-5)_{10}$
 - E.g. $(-4)_{10} + (-6)_{10} = (1100)_2 + (1010)_2 = (0110)_2 = (+6)_{10}$

– How to detect the overflow in 2's-complement system?

- Addition of opposite sign numbers *never* causes overflow.
- If the numbers are the same sign and the result is the opposite sign, an overflow has occurred.

- E.g.
$$(+7)_{10} + (+4)_{10} = (0111)_2 + (0100)_2 = (1011)_2 = (-5)_{10}$$

$$- \text{ E.g. } (-4)_{10} + (-6)_{10} = (1100)_2 + (1010)_2 = (0110)_2 = (+6)_{10}$$

Outline

- Number Representation
 - Number Systems
 - Integers
 - Unsigned and Signed Integer
 - Arithmetic Operations
 - Floating-Point Numbers
 - Unsigned Binary Fraction
 - Floating-Point Number Representation
 - Arithmetic Operations
- Character Representation
 - ASCII

Unsigned Binary Fraction

- Consider a *n*-bit unsigned binary fraction: $B = 0. b_{-1}b_{-2} \dots b_{-n}$ where $b_{-i} = 0$ or 1 (binary number) for $1 \le i \le n$
- This vector can represent the value for an <u>unsigned</u> <u>binary fraction</u> F(B), where $F(B) = b_{-1} \times 2^{-1} + b_{-2} \times 2^{-2} + \dots + b_{-n} \times 2^{-n}$
- The range of F(B) is $0 \le F(B) \le 1 - 2^{-n}$ • Why? Geometric Series $s_n = \sum_{i=1}^n a_i r^{i-1} = a_1 \left(\frac{1 - r^n}{1 - r}\right)$ $0 \le F(B) \approx +1.0, \text{ for a large } n$

Binary Fraction to Decimal Fraction

- What is the binary fraction 0.011010_2 in decimal ?

Decimal Fraction to Binary Fraction

- What is the decimal fraction 0.6875_{10} in binary ?
 - $\begin{array}{rcl} 0.6875 & * & 2 & = & 1.3750 & \rightarrow & 0.1???_{2} \\ 0.3750 & * & 2 & = & 0.7500 & \rightarrow & 0.10??_{2} \\ 0.7500 & * & 2 & = & 1.5000 & \rightarrow & 0.101?_{2} \\ 0.5000 & * & 2 & = & 1.0000 & \rightarrow & 0.1011_{2} \\ 0.0000 & * & 2 & = & 0 & \rightarrow & \text{End} \end{array}$
- Answer: 0.1011₂

Why? Let's have an analogy in decimal:

 $0.6875 \times 10 = 6.875 \rightarrow 0.6???_{10}$ $0.8750 \times 10 = 8.7500 \rightarrow 0.68??_{10}$

Class Exercise 2.4

- What is the decimal fraction 0.1_{10} in binary ?
- Answer:

What did we learn so far?

- Some decimal fractions (e.g. 0.1₁₀) will produce infinite binary fraction expansions.
- The position of the binary point in a floating-point number varies (that's way called floating point!).
 0.232 * 10⁴ = 2.320000 * 10³

 $= 23.20000 \times 10^{2}$

- A 32-bit signed integer in 2's-complement form can only represent values in the range of $-2^{31} \sim 2^{31} 1$.
- We need a unique representation that can
 - Represent the sign, and the position of the floating point.
 - Represent both very large integers and very small fractions.

Floating Point Number Representation

- In decimal scientific notation, numbers are written as : $+6.0247 \times 10^{23}, +3.7291 \times 10^{-27}, -7.3000 \times 10^{-14}, ...$
- The same approach can be used to represent binary floating-point numbers (using 2 as the base) by:
 - Sign: A sign for the number
 - Mantissa: Some significant bits
 - Exponent: A signed scale factor (implied base of 2)
- To have a normalized representation for floating-point numbers, we should normalize Mantissa in the range [1...*B*), where *B* is the base.
 - Binary System: [1...2)
 - $(1.b_{-1}b_{-2}...b_{-n})_2$ must in the range of [1...2).

IEEE Standard 754 Single Precision

- The single precision format is a 32-bit representation.
 - The leftmost bit represents the sign, S, for the number
 - The next 8 bits, E', represent the unsigned integer for the excess-127 exponent (with base of 2)
 - Note: The actual signed exponent E is E'-127
 - The remaining 23 bits, M, are the significant bits

IEEE Standard 754 Double Precision

- The double precision format is a 64-bit representation.
 - The leftmost bit represents the sign, S, for the number
 - The next 11 bits, E', represent the unsigned integer for the excess-1023 exponent (with base of 2)
 - Note: The actual signed exponent E is E'-1023
 - The remaining 52 bits, M, are the significant bits

Example of IEEE Single Precision

- What is the IEEE single precision number 40C0 000016 in decimal?
- Answer:

- - Sign: +
 - Exponent: 129 127 = +2
 - Mantissa: 100 0000...2
- Decimal Value: +1.100 0000...₂ x $2^{+2} = 1.5_{10} x 2^{+2} = +6.0_{10}$

Useful Tool

- IEEE-754 Floating Point Converter
 - https://www.h-schmidt.net/FloatConverter/IEEE754.html

Class Exercise 2.5

Student ID: _____ Name: _____

Date:

- What is -0.5₁₀ in the IEEE single precision binary floating point format?
- Answer:

Special Values

• When exponent E' = 0 (all 0's) and mantissa M = 0:

– The value 0 is represented.

- When exponent E' = 0 (all 0's) and mantissa $M \neq 0$:
 - Denormal values (i.e. very small values) are represented.
- When exponent E' = 255 (all 1's) and mantissa M = 0:
 - The value ∞ is presented.
- When exponent E' = 255 (all 1's) and mantissa $M \neq 0$:
 - Not a Number (NaN) (e.g. 0/0 or $\sqrt{-1}$) is presented.

Arithmetic on Floating-Point Number (1/2)

- When adding/subtracting floating-point numbers, their mantissas must be shifted with respect to each other.
 - E.g. adding $2.9400_{10} \times 10^2$ to $4.3100_{10} \times 10^4$
 - We rewrite 2.9400×10^2 as 0.0294×10^4
 - Then perform addition of the mantissas to get $4.3394\times10^4.$
- Add/Subtract Rule
 - 1) Choose the number with the smaller exponent and shift its mantissa right a number of steps equal to the difference in exponents.
 - 2) Set the exponent of the result equal to the larger exponent.
 - 3) Perform addition/subtraction on the mantissas and determine the sign of the result.
 - 4) Normalize the resulting value, if necessary.

Arithmetic on Floating-Point Number (2/2)

- Multiplication and division are somewhat easier than addition and subtraction.
 - No alignment of mantissas is needed.
- Multiply Rule
 - 1) Add the exponents and subtract 127 to maintain the excess-127 representation.
 - 2) Multiply the mantissas and determine the sign of the result.
 - 3) Normalize the resulting value, if necessary.
- Divide Rule
 - 1) Subtract the exponents and add 127 to maintain the excess-127 representation.
 - 2) Divide the mantissas and determine the sign of the result.
 - 3) Normalize the resulting value, if necessary.

Outline

- Number Representation
 - Number Systems
 - Integers
 - Unsigned and Signed Integer
 - Arithmetic Operations
 - Floating-Point Numbers
 - Unsigned Binary Fraction
 - Floating-Point Number Representation
 - Arithmetic Operations
- Character Representation
 - ASCII

Character Representation

- The most common encoding scheme for characters is ASCII (American Standard Code for Information Interchange).
- In ASCII encoding scheme, alphanumeric characters, operators, punctuation symbols, and control characters can be represented by 7-bit codes.
 - It is convenient to use an 8-bit *byte* to represent a character.
 - The code occupies the low-order 7 bits with the high-order bit as 0.

ASCII Table

Dec	Bin	Hex	Char	Dec	Bin	Hex	Char	Dec	Bin	Hex	Char	Dec	Bin	Hex	Char
0	0000 0000	00	[NUL]	32	0010 0000	20	space	64	0100 0000	40	0	96	0110 0000	60	`
1	0000 0001	01	[SOH]	33	0010 0001	21	1	65	0100 0001	41	A	97	0110 0001	61	a
2	0000 0010	02	[STX]	34	0010 0010	22	п	66	0100 0010	42	в	98	0110 0010	62	b
3	0000 0011	03	[ETX]	35	0010 0011	23	#	67	0100 0011	43	С	99	0110 0011	63	С
4	0000 0100	04	[EOT]	36	0010 0100	24	\$	68	0100 0100	44	D	100	0110 0100	64	d
5	0000 0101	05	[ENQ]	37	0010 0101	25	ક	69	0100 0101	45	Е	101	0110 0101	65	е
6	0000 0110	06	[ACK]	38	0010 0110	26	£	70	0100 0110	46	F	102	0110 0110	66	f
7	0000 0111	07	[BEL]	39	0010 0111	27	•	71	0100 0111	47	G	103	0110 0111	67	g
8	0000 1000	08	[BS]	40	0010 1000	28	(72	0100 1000	48	н	104	0110 1000	68	h
9	0000 1001	09	[TAB]	41	0010 1001	29)	73	0100 1001	49	I	105	0110 1001	69	i
10	0000 1010	A 0	[LF]	42	0010 1010	2A	*	74	0100 1010	4A	J	106	0110 1010	6A	j
11	0000 1011	0в	[VT]	43	0010 1011	2В	+	75	0100 1011	4B	к	107	0110 1011	6B	k
12	0000 1100	0C	[FF]	44	0010 1100	2C	,	76	0100 1100	4C	г	108	0110 1100	6C	1
13	0000 1101	0 D	[CR]	45	0010 1101	2D	-	77	0100 1101	4 D	М	109	0110 1101	6 D	m
14	0000 1110	0E	[SO]	46	0010 1110	2E	•	78	0100 1110	4 E	N	110	0110 1110	6E	n
15	0000 1111	0F	[SI]	47	0010 1111	2F	1	79	0100 1111	4 F	0	111	0110 1111	6F	0
16	0001 0000	10	[DLE]	48	0011 0000	30	0	80	0101 0000	50	Р	112	0111 0000	70	р
17	0001 0001	11	[DC1]	49	0011 0001	31	1	81	0101 0001	51	Q	113	0111 0001	71	q
18	0001 0010	12	[DC2]	50	0011 0010	32	2	82	0101 0010	52	R	114	0111 0010	72	r
19	0001 0011	13	[DC3]	51	0011 0011	33	3	83	0101 0011	53	S	115	0111 0011	73	s
20	0001 0100	14	[DC4]	52	0011 0100	34	4	84	0101 0100	54	т	116	0111 0100	74	t
21	0001 0101	15	[NAK]	53	0011 0101	35	5	85	0101 0101	55	υ	117	0111 0101	75	u
22	0001 0110	16	[SYN]	54	0011 0110	36	6	86	0101 0110	56	v	118	0111 0110	76	v
23	0001 0111	17	[ETB]	55	0011 0111	37	7	87	0101 0111	57	W	119	0111 0111	77	w
24	0001 1000	18	[CAN]	56	0011 1000	38	8	88	0101 1000	58	х	120	0111 1000	78	x
25	0001 1001	19	[EM]	57	0011 1001	39	9	89	0101 1001	59	Y	121	0111 1001	79	У
26	0001 1010	1A	[SUB]	58	0011 1010	3 A	:	90	0101 1010	5 A	Z	122	0111 1010	7 A	z
27	0001 1011	1B	[ESC]	59	0011 1011	3в	;	91	0101 1011	5B	[123	0111 1011	7в	{
28	0001 1100	1C	[FS]	60	0011 1100	3C	<	92	0101 1100	5C	Λ	124	0111 1100	7C	I
29	0001 1101	1D	[GS]	61	0011 1101	3D	=	93	0101 1101	5D]	125	0111 1101	7D	}
30	0001 1110	1E	[RS]	62	0011 1110	3E	>	94	0101 1110	5E	^	126	0111 1110	7E	~
31	0001 1111	1F	[US]	63	0011 1111	3 F	?	95	0101 1111	5F		127	0111 1111	7F	[DEL]

Class Exercise 2.6

• Represent "Hello, CSCI2510" using ASCII code:

	Decimal	Binary
н		
e		
1		
1		
0		
,		
С		
S		
С		
I		
2		
5		
1		
0		

Summary

- Number Representation
 - Number Systems
 - Integers
 - Unsigned and Signed Integer
 - Arithmetic Operations
 - Floating-Point Numbers
 - Unsigned Binary Fraction
 - Floating-Point Number Representation
 - Arithmetic Operations
- Character Representation
 - ASCII